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We study algorithms for approximation of Feynman—Kac path integrals in the worst
case setting. The algorithms use a finite number of samples of the initial condition
and potential functions. We present a new algorithm and an explicit bound on its cost
to compute am-approximation to the Feynman—Kac path integral. We also establish
bounds on the worst case complexity of Feynman—Kac path integration. The upper
bound is equal to the cost of the new algorithm and is given in terms of the complexity
of a certain function approximation problem. The lower bound is given in terms of the
complexity of a certain weighted integration problem. For some classes of functions,
these two bounds coincide modulo a multiplicative factor. In this case, the new
algorithm is almost optimal. The new algorithm requires precomputation of some
real coefficients that are combinations of multivariate integrals with special weights.
This precomputation is difficult and limits the application of the new algorithm. We
report the results of the precomputation for specific cas@%000 Academic Press

Key WordsFeynman—Kac path integration; Wiener measure; multivariate approx-
imation; worst case complexity.

1. INTRODUCTION

Path integrals are defined as integrals over an infinite dimensional space with respe
a probability measure. For the spacef continuous functions and the Wiener measure
path integrals are callédliener integralsWiener integrals play a major role in many areas
including quantum physics and chemistry, differential equations, and financial mathema

An example of a Wiener integral is given by the famd&ynman—Kac path integral
which gives the solution of the heat equation
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z(u,0) = v(u), 2

whereu € R, t > 0, V is a potential function, and is an initial condition function. Then
the solution is the Feynman—Kac path integral of the form

t
z(u,t):/cv(x(t)+u) exp</0 V(x(s)+u)ds)w(dx). 3)

Approximate evaluations of Wiener integrals was initiated by Cameron [5]. The reac
may find many papers on this subject in [7]. Additionally, this subject has been studiec
[6, 9, 11]. A typical approach is to replace the continuous functiog X3 1 + - - - + Xp¥n
for some continuous functionf and real numbers,i =1, 2..., n. Then the Feynman—
Kac path integral is approximated by a multivariate integral over the spad#ith a proper
choice of the functiong;, the error goes to zero agends to infinity. For instance, Chorin
[6] and Hald [11] proved that the error is of order? assuming that = 1 andV is four
times continuously differentiable.

In this way, the approximate computation of the Feynman—Kac path integral can be
duced to the approximate computation of an integral over the whole #Jadée cost of
computing the integrand value of thedimensional integral is proportional to This inte-
gral is usually computed by a Monte Carlo algorithm with, if possible, variance reductic
The randomized error of the Monte Carlo algorithm is of orkie¥’?, wherek denotes the
number of computed integrand values. The total cost is then proportionkl to

We add that the order of convergence of the Monte Carlo algorithm cannot be significar
improved. Indeed, Bakhvalov [4] proved that the minimal randomized error is of ord
k-/n+1/2 wherer denotes the smoothness of the integrands. Siiseusually much
larger tharr, the minimal randomized error is roughly of order*/2.

Suppose we want to compute an approximation with esrdrhis can be achieved by
using Chorin’s algorithm (fow = 1 and four times continuously differentiable functions
V) with n = O(¢~%?) andk = O(s72). The total costis nk which is of orders—25.

In this paper, we propose a different approach to approximation of Feynman—Kac p
integrals. Instead of reducing (3) to multivariate integrals, we consider algorithms that m
the most efficient use of valueso&ndV at a finite number of points, and of some other real
coefficients independent ofandV. Furthermore, we are interested in therst casesetting.
That is, unlike in the setting of Monte Carlo algorithms, we do not allow randomizatio
and we compute andV at deterministically chosen points. In the worst case setting, th
error and cost of an algorithm are defined bywtsrstperformance over all functionsand
V from a given class.

It is natural to ask what is the worst case complexity of Feynman—Kac path integrati
The worst case complexity is defined as the minimum of the number of the valuesdf
V plus the number of arithmetic operations needed to compute-apgroximation to the

1The heat equation (1) can also be approximated by using the classical approach of finite differences.
known that if the solutiorz is twice continuously differentiable with respect to the time variatalad four times
continuously differentiable with respect to the space varialffehich holds ifv andV are four times continuously
differentiable) then the solutiar(u, t) can be approximated with errerand with the total cost of order?2. Note
that the finite difference approach yields a deterministic algorithm and the worst case assurance of its €
Hence, the finite difference algorithm seems a little better than Chorin’s algorithm. However, Chorin’s algoritl
can be applied to Eq. (4) with an arbitrary smosth whereas the finite difference algorithm requitégu) =
exp(u).
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Feynman—Kac path integral (3). (The complexity study of general path integrals may
found in [20].)

In particular, we ask whether the bouad?® for the randomized case setting for four
times continuously differentiable functidoan be improved. As we shall see, even thougt
we switch to the worst case setting, there exists an algorithm which computes
g-approximation at cost of order roughdy %2° and the worst case complexity is of the
same order. Hence, the exponentot is an order of magnitude smaller; i.e., we gain ar
exponential reduction in the cost. We stress, however, that our proofs require an additi
assumption that the functionsandV decay sulfficiently fast.

Before we state our results more precisely, we note that by shifting the initial conditi
and potential functions, we may, without loss of generality, assume that the space paran
u = 0in (3). Furthermore, as in [6, 11], we consider in this paper a slight generalizati
of the Feynman—Kac path integrals by changing the exponent function to a fumttion
Unlike in [6, 11], we assume thad is an entire functiod. That is, we study approximate
computations of

t
S(v,V):/v(X(t))H(/ V(X(S))dS)w(dX) 4)
C 0

for various function® andV from a given class, and for a fixed positilze

Observe thaSis a functional which dependigearly on the functiorv, and, in general,
nonlinearlyon the functionv. The nonlinear dependence Wris especially important.

We assume that andV belong to a normed linear spa€eof functions defined over
R. We want to compute agrapproximation toS(v, V) for all v andV from F that are
uniformly bounded in the norm of the spaEeWe stress that we do not need to specify the
spaceF. That is, specific results depend B but our analysis is valid for any spaEe

For a given spacE, we present a new algorithi. which computes ag-approximation
of the Feynman—Kac path integr8l given by (4). It is based on Smolyak’s algorithm
for multivariate tensor products; see, e.g., [19]. The algorilyruses the values af
andV at deterministically chosen points derived from a certain weighted approximati
problem for the clasE. More precisely, we approximate(andV) by linear combinations
v(t1e)01e + - - - + v(th e) O, Where the sample points. and the functiom; . are chosen
in a special way.

The algorithmA, depends polynomially on the computed values ahdV. The degree
of this polynomial depends an and slowly goes to infinity astends to zero. The need to
use a nonlinear algorithm is not surprising since the original problem is nonlin&ar in

We provide an explicit bound on the cost of the algorithm By the cost we mean the
total number of the computed function valueswodnd V plus all arithmetic operations
needed to computd, (v, V). The essence of this bound is that the coshois roughly the
same as the cost of approximating the functiorsdV from the clas$ to within ¢. In
this way, we prove that the Feynman—Kac path integration problem is not essentially hal
than the corresponding approximation problem.

We illustrate the behavior of the algorithi,. for various subclasses @' (R). For
these subclasses, the costAf is roughly of ordere=/". Furthermore, the algorithm
A, is now almost optimal. This should be compared to the cost of arelet when the

20r the bound:~2 for the worst case setting with the finite difference approachtamdstricted to exp.
3If H is not entire but smooth, one may repladeby a polynomialP which approximatesd such that
[H(u) — P(w)| < ep(u), Yu € R, where the weighp is, for example, equal tp(u) = exp(u).
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classical Monte Carlo algorithm is used, whereas before, denotes the dimension of the
reduced multivariate integral. Hence, despite the use of the worst case setting, we ha
big improvement.

The algorithmA, requires the precomputation of certain real coefficients which ar
given as some weighted multivariate integrals. These coefficients are independent of
functionsv, V € F, but they depend on the global parameters of the Feynman—Kac p:
integration problem such as H, t, and the clas§&. The total number of them is roughly
equal to the cost of the algorithi,, and it goes to infinity as tends to zero. Observe
that any implementation of the algorithA. can use these coefficients as built in element:
(constants), hence the precomputing does not count in the cost analysis of

The precomputing relies on calculation of a large number of multivariate integrals. Her
it is not surprising that it itself is a difficult task. We did three different precomputation
for classed- of functions of regularities = 1, 2, and 4. We used Monte Carlo to calculate
the integrals. The precomputed coefficients were evaluated with error of ordgrske
Section 5. This obviously limits the application of the algoritAgto a relatively large. We
believe that the precomputing of these coefficients requires the design of a special algori
that takes a full advantage of the specific form of the weighted multivariate integrals to
calculated. Unless we have such an efficient algorithm, the practical usenwdifl be most
likely restricted to moderate accuracyHowever, if one is interested in rapid approximation
of many path integrals with a moderate accuracy then the precomputation is not an is
and the algorithmA, can be used very efficiently.

In this paper we also study the worst case complexity of Feynman—Kac path integrati
The upper bound on the complexity is obviously supplied by the cost of the algofithAs
already mentioned, this upper bound is given in terms of a certain approximation proble
We establish a lower bound by showing that Feynman—Kac path integration is not ea
than a certain weighted scalar integration problem. The weight is now a one-dimensic
Gaussian(2rt)~Y? exp(—u?/(2t)), and the weighted integration problem is considerec
again for the clas§.

Hence, if the weighted approximation and integration problems for the €ldsave
essentially the same complexity then we have tight bounds on the complexity of Feynm
Kac path integration. This is the case, modulo multiplicative factors, for various subclas
of C"(R) for anyr. Forr = 0, the weighted integration problem has infinte complexity for
smalle, and so does Feynman—Kac path integration.rFerl, all three complexities are
essentially of ordes~Y/". In this case, the algorithmA, is almost optimal.

Finally we stress that, although Feynman—Kac path integration is nonlinear, we bol
its complexity by the complexities of twkinear problems. From below, it is bounded by
weighted integration, and from above by approximation. This is essential since it allows
to use the complexity theory of linear problems; see, for example, [13-15, 17] for integrat
and [14, 17] for approximation. What is perhaps even more striking is that both weight
integration and approximation anee-dimensiongbroblems although Feynman—Kac path
integration involves integrals over an infinite-dimensional space.

2. FORMULATION OF THE PROBLEM

Let w be the classical Wiener measure defined on the spaceC ([0, +oc]) of con-
tinuous function : [0, +00) — R. For the definition and basic properties of the Wienel
measure we refer the reader to, e.g., [18]. Here, we only recailtisa zero-mean Gaussian
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measure with the covariance function
R,(s, t) = / X(S)X()w(dx) = min{s, t}.
C

LetH be an entire real functiot] : R — R, normalized such thai (0) = 1. We assume
that the successive derivatives Idf at zero can be easily computed. A primary example
of such a function iH (t) = exp(t). For a given functiorH, we define the functiom *:

R — R, by

(d)(o)’ |t|

H*(t) = Z‘

Clearly,|H (u)| < H*(u)andH* isanincreasing function over[@-0c0). ForH (t) = exp(t)
we haveH* = H over [0, +00).

We need an upper bound on the coefficientsldf For simplicity, we assume that there
exists a nonnegative constdrtsuch that

IHP©O] <H? vd=01,.... (5)
Then (5) implies that
IHW)| < H*(u) < exp(H|ul).

Let F be anormed linear space of functions defined &@rhe norm ofF will be denoted
by || - ||lr. We assume that for everye R the function evaluation functional,(f) = f(u)
is continuous; i.e., it has a finite (operator) noftn, || .

We need an additional assumption that relates the Wiener meastine functionH,
and the spac€&. Namely, we assume that for any posittvenda we have

't
/C||Lx(t)||FH*<a/o ||LX(S)||Fds>w(dx)<oo. (6)

Note that (6) holds ifiL¢||r = O(t%) with « < 2 ast tends to infinity. Indeed, in this case
the integrand in (6) is bounded huyl||x||‘[’07t] explaz|IXllfp 1) for somea; and o, which
only depend on, «, and’, with ||X|ljo,t] = MaX[o,yj [X(W)|]. Sincea < 2, the integrand
is bounded by exp(a4||x||[2c,ft‘5]) for some positives, a3, anday4. The latter function is
integrable due to Fernique’s theorem; see, e.g., [2].

We illustrate these assumptions by the following examples of the dpace

ExampPLE 1. Let F be the following Banach space of functiofis R — R. Each f
has absolutely continuous — 1)st derivative, f(0) = --- = f*~Y(0) = 0, and itsrth
derivative is bounded in the following sense:

I lle = [[(F - 9D - 2| ) < 00

Here 1< p < oo andy;, i = 1, 2, are given weight functions of the form

Ui (X) = (IX] + 1)* 7
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with a; > 0 anda, € R. Sincef - yr; has only one-sided derivativesyat= 0, by the norm
I Il ey we formally mean(|| - I @, + I+ IC &, )P
Obviously,| - || is a norm. Furthermore, function evaluatiohs( f) = f (x), are con-
tinuous functionals. Indeed, for a positivewe have
| [ x=pt Ya(t)
fOOl = @no) ™ | —2— - (f -y O (1) - == dt
1001= o —nr VT

< (W) fllE - AX)

with

B X (X_t)l'—l s q 1/q
AX) = </o ((I’ e S(t+1) > dt)

and q such that Ip+1/g=1. It is easy to see thaf(x) = O(x'~1-2+l/a) =
O(x"'~¥/P=2), Since the same can be shown for negativare conclude that

ILxlle = O(Ix|""/P~2"%) as|x| — oc. 8)

Hence (6) is satisfied if —1/p—a; —ax < 2.

ExAmMPLE 2. LetF be the Banach space of functiofis R — R with continuous and
bounded derivatives up to orderand

I1le =max{l|f - ¥lleo,

fO .. 1<i=<r}.

Herey € C(R) is a suitably chosen function with values at least 1. For instafice,1, or
Y(u) = (1+ [up2witha > 0, ory (u) = exp@@u?) witha > 0. Then||Ly||r < 1/¥(X) <
1 for anyx € R, and (6) holds.

ExamPLE 3. Let F be a reproducing kernel Hilbert space whose kernel is denote
by K (-, -). For the definition and basic properties of reproducing kernel Hilbert spac
see, e.g., [3]. We only recall that for anfye F and anyt € R we haveK(t, ) € F
and f (t) = (f, K(t, ))g, Vt € R. In particular,K (t,t) > 0 and||L{|r = IK(, )|l =
JK(t, 1). Hence, (6) holds iK (t, t) = O(t#) with 8 < 4 ast tends to infinity.

To be more specific, consider ndfw(u, t) = %exp(—|u —t|). This kernel corresponds
to the spacéd- consisting of functiond with

Mﬁ=uﬁn=4mmf+wmﬁM<w
ThenK (t,t) = 1/2 and (6) holds.

We are ready to define our problem. RarV € F and a fixed positivé we want to
approximate

t
S(v,V) = S(v, V;t) = / v(X(t))H (/ V(X(S))dS)w(dX). 9)
C 0
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Observe that the operat®: F?2 x R, — R is well defined. Indeed, due ta(u)| <
lvllellLulle, we have

t
v(X(t))H (/ V(x(s))ds)
0
t
< ||v||F||LmeFH*(anF/0 |\Lx<s>y|Fds).

Hence, the integral in (9) exists and is finite due to (6).

The operatofSis given by gathintegral, i.e., by an integral over the space of continuou
functions. In generalSis nonlinear.

As already mentioned in the introduction, faxu) = exp(u), (9) is the famous Feynman—
Kac formula for the solution of the heat equation with the initial conditiamd the potential
function V, see, e.g., [1, 8, 12]. This is why we call (9)Faynman—Kac path integral
independent of the choice of the functibh

We wish to approximat& with (worst case) error at mostfor variousv andV. In what
follows, we assume that we know some upper bounds on their norms. For positied,
let v and} denote upper bounds on the norms@ndV, and let

t
< Jo(x(®))] H('/ V(x(s)) ds
0

Fov={(,V) e F?:ulle <v and [V]e <V}
We wish to find an algorithr#\, such that

sup |S(v,V)— A (v, V)| <e.

(v,V)eF,y
We require that the algorithm, can use onlywaluesof the functionsy andV, as well as
arithmetic operations and comparisons of real numbers. The cost of the alg@ithm
cos(A,), is the number of such function values and arithmetic operations. The (worst ca
complexity compf{) of Feynman—Kac path integration is defined as the minimal cost «
algorithms with errog; see, e.g., [17] for a precise definition. Obviously, the complexit
compg) depends on all the parameters of the problem, i.e., on the fundtiemmd its bound
‘H given by (5), on the parameterand on the clask, as well as the norm bounasand
V. To stress the dependence on the claswe will write compe) = comp(e; F).

3. NEW ALGORITHM

Inthis section, we derive a new algorithm for approximating Feynman—Kac path integr:
We analyze its error and estimate the cost needed to computeapproximation. The
optimality properties of this new algorithm will be established in the next section.

We begin with expanding the functids in (9). We have

. t 00
s, V)= | v(x(t))H( / V<x<s>>ds)w(dx>=st+1(v,V>,
d=0

where

H®@(0)
d!

9(0)
/ v(x(t))( / V() - - Vx(ta) dt)w(dx)
d! c [0,t]¢

t d
Si+1(v, V) = Cv(X(t))(/0 V(X(S))dS> w(dx)

H¢
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witht = [ty, to, . . ., tg]. The inner integrand is a symmetric functiontd$é and, hence,
Si11(v, V) = HP(0) / v(X(1)) V(X(t) -+ V(X (ta)) dt w(dX).
c O<tyi<--<tg<t
Setty = 20 =0, tg41 =t, andz; = x(t;) for j =1, ...,d + 1. Using a well-known fact
on the distribution of the random vectoe= [z3, 75, ..., Zg41] € R we get
Siv1(v, V) = H(d)(o) /d ) fa+1(2)9d+1(2) dz, (10)
R I+
where
d
fay1(2) = v(zasn) [[ V@0, (11)
k=1
_ exp(—z/(2t))
01(z21) = W,

1 d+1 2 (12)
94:1(2) _/ exp(—3 221z — -7/ —tj-1))
d+1 O<ti<tp<-<ty<tyss (20 @D2 /T — o) - - - (lap1 — ta)

Hence, S, 1(v, V) is a(d + 1)-dimensional weighted integral with the weidht. ;. The
weightggy.1 is nonnegative, and

td
/ 01(2dz=1 and / Og+1(2)dz = / dt = —.
R RI+1 0<t;<ty<---<ty<tgi1 d!

We will need the following lemma.
LEMMA 1. We have

) 1 g ) tBd-1/2 J
= ——— an < , vd >
||gl|||_2(]R) zx/ﬁ ||gd+1|||_2(Rd+1) = 2r(1+ (3d — 1)/2) =

Proof. See the Appendix. ®

To define the new algorithm for approximating the Feynman—Kac path integrals, we n¢
efficient algorithms for approximating multivariate functiofisgiven in (10) and (11) with
error measured in thé-dimensional >-norm:

I fall e = 1/ / iR,
R

It follows from [19] that such efficient algorithms exist for a number of clagses

Indeed, sincefy is a tensor product of scalar functions dhd|, e, is a tensor product
norm, Lemma 2 of [19] holds. We need only to replace the worst case error in (19)
[19] by the error for the functiorfy. Due to linearity of the corresponding algorithms, this
will result in increasing the error boursdby multiplying it by the norm offy; i.e., instead
of ¢, the error will be bounded by||v||F||V||‘é*1. Furthermore, all remaining worst case
results of [19] hold if the worst case errors are replaced by the errors for the functions
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the form fq. In particular, fors > 0 andd > 1, there are numberge, d) € N, functions
Oied € LZ(R“) and pointd; . 4 € RYi=1,..., n(e, d), such that the algorithms

n(e,d)
Aca(fe) = > faticd)Gica (13)

i=1
approximatefy with errors bounded by

I1fa— Aca(Dll,@e < ellvlEIVIET < evVo (14)

The numben(e, d) of function evaluations used b¥, 4 is bounded by

In1 (a+1)(d-1)
/ 8) £ (15)

ne, d) < ao(a1+a2d 1

+
for some numberg; and a positiver; see [19]. We hava, = maxa, 0}, and by convention,
the right-hand side of (15) equalge * whend = 1. We stress that the numbersando
do not depend on andd, and they are fully determined by the approximation problem fo
the class-.

The essence of (15) is that the leading terrhis the same for al. The only dependence
ond is through the logarithmic factors.

We are ready to approximate the weighted inte§é#b, V). For givens > 0 andd > 1,
consider the algorithm

S@. V)~ ¢eg@. V) With  ¢.a(v. V) = H(0) /R ,Aca(f)(@ ga(2)dz, (16)

whereA, 4 is the algorithm (13) for approximatingy. Due to linearity ofA, 4, we have
n(e,d)
$ea@. V) =HOD(0) Y fa(tica)aea with a.q= /d 0i.0d(2) 9a(2) dz. (17)
i=1 R

From (14) and Lemma 1, we get

1S4(v, V) = pe.a. V)| < [HOPO)] [ fa — Aca(Fea) I, 1Gall L, ge) < eKavV?,

(18)
where
Ky = [H(O)]
27t
and

t(3d—4)/4| H (d-1) (O)l
/27T (L + (3d —4)/2)

Sincel'(z) = 227 Y?e72/2n (1 + 0o(1)) asz — +oo, there exists a positivé = K (t, H)
such that

Kg ford=23,....

Ka = O(K®/d%/2).

Hence Ky goes super-exponentially fast to zeradagoes to infinity.
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We now define the new algorithiy, for approximating the Feynman—Kac path integral
S(v, V). For a giverg,

A0, V) =" ¢egav, V), (19)
d=1
where
&
= 20
&d Kg2dpyd-1 (20)

SinceKqy goes super-exponentially fast to zesggoes super-exponentially to infinity with
d. Hence,n(eq, d) and consequently,, 4 are zero for largel. Therefore,A, consists of
only finitely many terms in (19).

THEOREM1. The algorithm Adefined by19)and(20)approximates the Feynman—Kac
path integral Sv, V) with error not exceeding and cost bounded by

cos(A,) < K(e)e™, (22)

where K(e) = 20(2v)¥/(v/2/mt)*C(e),

Cle) =2+ (d+DCye™

d=2
( In@Vah+Ine+ InT(L+ (3d—4)/2)>(‘”1)(d+1)/
x| Cotan
d—1 .
['(1+ (3d — 4)/2)°, (22)

and G = 2HVt¥*, C, = a1 + a2 In Cy. Furthermore
K(e) = O(e%), V§=>0.

Proof. We first prove that the error of the algorithfqy is at most:. We have

S, V) — A, V) =) (Si(v, V) = e a(v, V).

d=1

Due to (18) and (20) we conclude

o0
1S@, V) = Acw, V)| < > eaKavV* ™ =,
d=1

as claimed.

We now estimate the cost of the algorithAn. We need to compuig., 4 (v, V) given by
(17)and (11)fod = 1, 2, .. .. Assuming that the numbeks - (0)a; , 4 are precomputed,
we need to compute(eq, d) values offq and at most &(eq, d) — 1 arithmetic operations.
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Each value offy requires one function value efandd — 1 values ofV to be computed
as well asd — 1 multiplications. Hence, the cost of computifg 4(u, V) is bounded by
2(d 4+ 1)n(eq, d). The cost of computind\ (v, V) is estimated by

oo
costA,) < Z 2(d + Dn(eq, d).
d=1
Due to (15), after some calculations we obtain
costA;) < K(e)e ™™,

which proves (21).

Finally, we prove thaK (¢) = O(e~?%) for arbitrarily small positives. Of course, it is
enough to prove tha(e) = O(¢7?). Let 8 = 1.5(« + 1). Using once more the fact that
I'(z) = 27 Y2e2/27 (1 + 0o(1)) asz — +o0, there exists a positiv€ such that

< CPI(1+In(1/e)/d)"

Cle) = 15ad
d=2
Clearly,
Inl/e B dInl/e
1 =1 \2) .
t—y = 5( + 54 ) =B
Hence,

In1/e\?* /p\* In(1/e)* \#®  /p\F4/1\°
(+557) =(5) (+"5) =(5) ()

From this we conclude that

1 5§ oo Cﬂ Bd -
C(M@ Z(y) foisad

d=2

Since the last series is convergedite) = O(¢~?), as claimed. m

4. COMPLEXITY

In this section, we analyze the worst case complexity of Feynman—Kac path integrat
We obtain bounds on the complexity by relating Feynman—Kac path integration to so
specificapproximationandintegrationproblems ovefR.

We begin with an upper bound. We assume that the funcfioad= can be approximated
in the spacé_,(R) with orderp > 0 by using values of . That is, there is a sequeng&, },
of algorithms, each of the form

n
An(f) =D ftingn with tneR, and g, e Ls(R), (23)

i=1
such that

If = An(DllL®)
Il

— 0P, VvfeF. (24)



346 PLASKOTA, WASILKOWSKI, AND WOZNIAKOWSKI

Let p* = p*(F) denote the supremum @f satisfying (24). The exponemqt* is closely
related to the complexity comif(e, F) of the approximation problem. That is, if we want
to approximate functions from the unit ball of the clds@ the L,-norm overR then

(7P ) = comg®(e; F) = O(™VP' ), V5> 0. (3)

The sequenciA,}, of algorithms may serve as a basic step in constructing the algorithr
A, 4 of (13) as explained in [19]. In fact, the paramedeof (15) can be setta = 1/p
for any p satisfying (24). Theorem 1 states that the cost of the algoriéhis bounded by
K ()¢~ with K (¢) = O(e~?%). Obviously, the cost of the algorithi, is an upper bound
on the complexity of Feynman—Kac path integration. Sipcan be arbitrarily close tp*,
we get the following upper bound.

compe; F) = O(e_l/p*_‘s), V8 > 0.

We now turn to a lower bound on the complexity of Feynman—Kac path integratio
Consider the Gaussian-weighted integration problem for the Ela3$at is, suppose we
want to approximate the integrals

1 (f) = (2nt)—1/2/ f (u) exp(—u?/(2t)) du
R

by using function values only. Assume that there is a sequiBygg of algorithms each of
the form

n
Ba(f) =Y f(nnan with taeR, and aneR,
i=1

such that
[1(f) = Bn(f)]
Iflle

Letg* = g*(F) denote the supremum qgfsatisfying (26). It is known that the complexity
comp™(e, F) of integration in the unit ball of the clags satisfies

— 0o, VfeF. (26)

Q(e7¥9 %) = compg™(e, F) = O (e /4?), Vs> 0. (27)
Itis clear that the complexity of Feynman—Kac path integration is bounded from below
compe; F) = (e 9+, vs > 0.

Indeed, take/ = 0. SinceH (0) = 1 we haveS(v, 0) = fC v(X(t))w(dx). Changing vari-
ables byu = x(t) we getS(v, 0) = | (u). Hence, Feynman—Kac path integration problem
is not easier than the integration problem for the ball of radius the space-. Sincev
changes only the multiplicative factor of the integration complexity, the lower bound ¢
compg; F) is proven. Hence, we have

THEOREM 2. Let p* and ¢ be the exponents of the approximation and integratior
problems defined b§25) and (27). Then the worst case complexity of Feynman—Kac pat
integration is bounded by

Q(e VP = comple; F) = O(e VP E=%) vs > 0. (28)
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Observe that the exponents of the lower and upper bounds in (28) do not depend or
function H. For some functionsl, the exponent of the lower bound is sharp. This holds
for example, forH (t) = 1, Vt, independently of the choice of the spdee

For some spacds, we havep* = gq*, and the exponents of the lower and upper bound
almost coincide. In this case, the algorithfn given by (19) is almost optimal. We now
present examples of such spages

ExamMPLE 4. LetF be the Banach space of Example 1 with the functigns/, defined
by (7). Letg(x) = f(x)y1(x). Then| fllg = 9V V2L ,@)- Suppose we approximate
by U which uses the valuek(x) fori =1, 2, ..., n. We have

/R 100 — U2 dx = /R 1900 — Uz 001297 2(0) dx,

whereU;(x) = U (X)y1(X). This shows thalt ,-approximation for the functions is equiv-
alent to weighted.,-approximation with Weighﬂfl‘z(x) for the functionsy. The latter was
considered in [21]. Assume that

ar+min{l—1/p,a}>r+1/2—-1/p.

It is proved in [21] that then the exponent fop-approximation equalg* =r — (1/p —
1/2).. For integration, the exponent equais= r. Hence, forp > 2we havep* = q* =r
and, due to Theorem 2, the complexity of Feynman—Kac integration is roughiy.
Observe also that the last inequality implies (6) due to (8).

ExAMPLE 5. Consider now the Banach spae®f Example 2. Since we consider only
r times continuously differentiable functions, it is well known that the expopémtf L ,-
approximation is at most. To obtain a lower bound fop* we proceed as follows. Take
T > 0and sample points, = iT/n, fori =0, £1, +2, ..., +n. We approximatef by f
which is the piecewise polynomial interpolation of order 1 on the interval £ T, T], and
zero outside of this interval. Then we have

Ca/miifle,  (u=T

1fu) — f) < ,
{wl(u>||f||p, u > T

which implies

1= flle r4+1/2p-1 -2 i
- T _oT n—" + Y S(u)du .
I flle luj=T

Suppose now that (u) = (1+ |u|)® with a > 1/2. Then, forT = O(n"/"+®), we have
that the error

It Hff””LZ(R) — O(n—r(a—l/Z)/(r+a))
F

and, consequently, the expongsit > (ﬁ) (a—1/2). Hence, for large, the exponent
p* >~ r. From this it immediately follows that ifr (u) increases faster than any polynomial
as the argument| — oo, thenp* = r. This holds, for instance, for the Gaussian weight
¥ (U) = exp(—u?/2)/v/2r.

Similarly, for integration, we obviously have the exponght< r sincer is the exact
exponent for integration over a finite interval. As before, forincreasing faster than

polynomials we haveg* =r.
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Thus, for space$ with ¢ increasing faster than any polynomial, the complexity of
Feynman—Kac integration is again roughly"/".

5. IMPLEMENTATION REMARKS

In this section, we discuss implementation of the Feynman—Kac path integration al
rithm A, of Section 3.

The algorithmA, produces am-approximation to the solutioB(v, V). SinceSis non-
linear, it is not surprising tha, is also nonlinear. In fact, the algorithA is a polynomial
in the values ofv andV at sample points. When we estimate the cosfgfwe assume
that the coefficients of this polynomial apgecomputedFor fixede, H, t, v, V, and the
classF, this can be done, at least theoretically, since the coefficients afre indepen-
dent of the function® andV which vary through the balls of the clas Formally, this
means that the algorithA, is nonuniform ine, H, t, v, andV. The reader is referred to
a recent paper [16] where the cost of uniform and nonuniform algorithms is discussed
compared.

The precomputed coefficients of the algoritiinare given as weighted integrals of the
form

qjed = /]Rd 0i.e.d(2)04(2) dz (29)

for some specific (tensor product) functiogs 4, see (13), and weightgy(z) given by
(12). We need .4 foralli = 1,2, ..., n(e, d) and a fewd. The total number of needed
ai..d1SY g4 N(e, d). As already mentioned in Sectionr8g, d) goes super-exponentially
fast to zero and only a few terms of the last series are not zero.

Clearly, we do not need the exact valueg;qfy. Itis enough to know them approximately.
However, the required accuracy of the coefficients dependand increases aslecreases.

The precomputation of the coefficierats. 4 with large precision may be difficult. Indeed,
let us first observe that eaeh, 4 is a linear combination of some multivariate weighted
integrals defined oveR®. The integrals are of the form

li,j = /]RdH Yio.io (Z0)Viy, j, (Z1) - - Vg, j4 (Za)

>) didz, (30)

1(3 | @-2)? (za—24-1)°
X/ _eXp(—z(g—F AL .
O<to<-<ty=t (27) D72 oty — o) - - - (tg — ta—1)

for differentindices andj, wherey;, ;, are some basis functions used in the one-dimension:
approximation (23). Even for moderatethe computation of (30) with large precision is a
difficult task.

Precomputing should be done with higher precision than the desired precision of the f
approximation toS(v, V). For instance, if we want the final approximation with precision
103, we must have the coefficierds, 4 with precision 10 or even higher, and hence the
number of integrals to be precomputed can be huge. Thus, in addition to the errors occut
when approximating the path integral, we have another source of possible errors whic
due to inexact precomputation.
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We experienced all these difficulties when implementing the algoréhQnAs the one-
dimensional approximations we took piecewise polynomials of order 0, 1, and 3, which
(almost) optimal forl,-approximation for many spaceésincluding those of Example 2
with regularityr = 1, 2, 4, correspondingly (see also Example 5).

In our implementation, the one-dimensional sample points were chosen as the pc
dividing the real line into the intervals of equal Gaussian (standard) measure. We calcul;
the integrald;; by using the classical Monte Carlo with respect tmdz.

We present sample results for one precomputing for eadhe sett = 1, the upper
bound ond was taken aslhax = 6 and the numben(d) of points in approximation ofy
was equalto 511, 769, 1023, 769, 351, 545, 12dfer0, 1, 2, 3, 4, 5, 6, respectively. This
corresponds to precomputation of 10,375 integrals (30) of dimensions 1, 3, 5, 7, 9, 11,
For each integral (30), we used Monte Carlo witd $@mple points. The calculations were
performed on the IBM POWER PC 604 computer, and it took about two weeks of CF
time (for eachr) to complete the precomputing.

The precomputing described above was then used in an implementafipand applied
for various functions andV. We present two series of tests, foandV with known and
unknown exact solutionS(v, V; t). Inthe latter case, we ran a version of Chorin’s algorithrr
for many sample points—see Chorin [6] or Hald [11]—and treated the results of Choril
algorithm as an exact solution.

We stress that if the precomputing were exact, Chorin’s algorithm would be inferior to c
algorithm, at least for functions from classes of Example 2, as explained in the Introducti
In particular, with the precomputing abov&, uses only 511 values af andV, and for
v = 1this number even reduces to 127 value¥ ofence, the running time &, is almost
negligible. Chorin’s algorithmin turn use& values, whera is the number of discretization
points andk is the number of Monte Carlo points. On the other hand, Chorin’s algorith
doesnotrequire any precomputing and hence it can give more accurate results pravide
andk are chosen large enough. The maximal accuracy obtained by Chorin’s algorithm
about 16# (which agrees with theoretical properties of Monte Carlo), and to get this v
needed 1 p2 h of CPUtime. With the use of precomputed coefficients, the same accura
can be obtained by, in less than 1 s.

In all the tests we assunté(z) = exp(z) andt = 1.

Test 1(Known Solutions) Herev andV satisfy V(x) = 1 — v”(x)/2v(x)) for the
functionv given below. Then the exact solution$¢v, V; t) = v(0)€".

The results for the first cage= V = 1 actually show the accuracy of the precomputing
since if the precomputing were exact we would get the exact solution foisalt seems
that forr = 4 the accuracy of the precomputing is not sufficient and therefore the errc
forr = 4 are comparable with those for= 2. (This is probably caused by the fact that for
r = 4 the basis functions in (30) are more complicated tham ferl, 2.)

A — S(v, V; D]
v(X) V(X) r=1 r=2 r=4
1 1 5310—3 34, 90—4 82,9-4
cogx) 3/2 1310 -1 3.410 -2 3.510 -2
EX[XX) 1/2 8.310 -2 4.510 -2 4.510 -2

exp(—x2/2) 33— x2)/2 66, 0—2 11,0—1 11,9-1
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Test 2Unknown Solutions) We setv(x) = V (x) = exp(px?), wherep is a parameter.
The largerp, the larger the norm of andV, so that the difficulty of the problem increases
with p.

As for the previous tests, we do not see any signifficant difference between the errors
r = 2 andr = 4. Once more, this is an indication that the accuracy of precomputing is n
sufficient forr = 4.

We want to stress that the results reported below need not be very conclusive due tc
fact that Chorin’s algorithm is nondeterministic and we only know that its expected errol
not smaller than 10*. Observe that for tests with unknown solutions we us@dV from
the class of Example 2, in which case the theoretical complexity is roughly proportior
to e~Y/". However, the bounds on the norms increase wpitland therefore the errors are
larger for largerm:

v(X) = V(X) = exp(—pXx)

|A; — Chorin|
p Chorin r=1 r=2 r=4
0 2.71828 Bi0—3 34,0—4 82104
1 1.30761 B0—3 8610—3 80,0—3
2 0.93898 140-2 142 1502
3 0.75257 2Zlo—2 2710—3 34103
4 0.63693 Pp—-2 192 210—2

We also applied other than Monte Carlo algorithms for computation of integrals (3(
including some deterministic algorithms, but we have not obtained qualitative better rest
For instance, we used a version of Smolyak’s algorithm. This algorithm requires a ten
product form of the weight. It can be achieved by a change of variables, but then
transformed integrand becomes a non-Lipschitz function. Our computations confirmed
difficulty of dealing with non-Lipschitz functions. Another attempt was made by the use
some quasi-Monte Carlo algorithms (QMC) which also did not fully succeed.

Itseems to us thatthe accuracy of precomputing can be reduced only by inventing a spt
algorithm that makes use of a particular form of the integrals (30). By now, however, the le
10~ has been the maximal accuracy of the precomputing. This establishes an inevit:
error whenA, is applied and restricts, so far, the practical useéApfto the cases when
one needs fast a solution withnaoderate accuracgnd/or for many different functions
andV.

Observe also that the precomputing for a spetifin be used to obtain an approximation
of the path integral for otheis, so that one can easily draw a graph of the soluian V; t)
as a function of. Indeed, this follows from the equality

S(v, Vi ty) = S@, V; b),

where v(x) = v(X4/t1/t) and V(X) = (t1/H)V (x4/t1/1). Note that ift; increases then
the norms ofv™andV also increase. Hence, the boundand) must be appropriately
modified.
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APPENDIX

Proof of Lemma 1. The value oﬂ|gl||f2(R) is easy to find. Therefore, we only prove the

upper bound oL HS = ||gd+1”i2<Rd+1)' Obviously,

LHS = / / hgt1(u, t,v)dudvdt,
O<ty<--<tg<t JO<vi<--<vg<t JR¥!

where
) exp(— S0 — uj D2/ — b0 + 1/ ) — v 1)
d+1 u, t7 V) =
TT1871 V/Ar 2t — 4 (v — vj_1)
with ug = vo = 0, vg.1 = t, andv = [vy, ..., vq]. Let Byy1 = Byr1(t, v) be the inner in-

tegral with respect to. Then

Buss = / ha(U, t. W) (Ug) du
Rd

with

| (Ug) = / exp(—(Ug+1 — Ug)%(1/a+ 1/b)/2) a
Tk JVax7ab ety

a =tq.1 — tg,andb = vg,1 — vq. Byachange of variableg,:= (Ug4+1 — Ug)+/1/a + 1/b,
we get

1 1
I = —y?/2)dy = .
(Ug) ﬁﬂ(a—kb)/n@exp( y°/2)dy 7@t h

This proves that

d+1
By 1
Bd+1 = = H
V2r(tay —ta +var —va) oy /2m (G — o+ —vjoa)

and, consequently, that

LHS
d+1 1

7
= dvdt
(2m)@+D/2 0<t;<--<tg<t JO<vy<--<vg<t 11;[1 V=Tt —vja

d d

{20-(d+1)/2 -12
= 2— t + ti + v dvdt;
(2”)(d+1)/2/tizo,z;’=ltisl Azo,zdﬂwsl Z( kUi H(' vi)

k=1 i=1

with the second equality due to the change of varialtles: (t —tj_1)/t andv; ;= (v; —
vi_1)/t. Let us make another change of variablgs:=t; + v; and x :=t;. Then the
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domain of integration is contained in a set of nonnegaiiigeandx;'s such thak; < z and
9,z < 2. This gives the estimate

t(3d-1/2 d . 1/2
LHS < 7/ 2— Zx zZ / 1ldxdz
(2m)@+D/2 0<z,y9 .,z <2 kz:; |1:[1 I 0<x<z
t(3d-1)/2 d —12 g
= 2— Zx JZidz
(Zﬂ)(d+l)/2 /ng; 8 z<2 ; E
d Yz g
(21-)(3d—1)/2 /
=" 1- Zx 7z dz
(2m)(d+D/2 07,58 7 <1 kz:; Il;[l !

_ t(3d‘1)/22d‘1(F(3/2))dﬁ
© g@D2r(1+ (3d - 1)/2)
£(3d-D/2

T A1+ Gd-1/2)’

with the second to last equality due to (4.635.4) in [10]. This completes the proof of t
lemma.
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