
Journal of Computational Physics164,335–353 (2000)

doi:10.1006/jcph.2000.6599, available online at http://www.idealibrary.com on

A New Algorithm and Worst Case Complexity
for Feynman–Kac Path Integration

Leszek Plaskota,∗ Grzegorz W. Wasilkowski,† and Henryk Wo´zniakowski∗,‡
∗Institute of Applied Mathematics and Mechanics, University of Warsaw, ul. Banacha 2, 02-097 Warsaw,

Poland;†Department of Computer Science, University of Kentucky, Lexington, Kentucky 40506; and
‡Department of Computer Science, Columbia University, New York, New York 10027

E-mail: leszekp@mimuw.edu.pl, greg@cs.uky.edu, henryk@cs.columbia.edu

Received July 5, 2000; revised August 8, 2000

We study algorithms for approximation of Feynman–Kac path integrals in the worst
case setting. The algorithms use a finite number of samples of the initial condition
and potential functions. We present a new algorithm and an explicit bound on its cost
to compute anε-approximation to the Feynman–Kac path integral. We also establish
bounds on the worst case complexity of Feynman–Kac path integration. The upper
bound is equal to the cost of the new algorithm and is given in terms of the complexity
of a certain function approximation problem. The lower bound is given in terms of the
complexity of a certain weighted integration problem. For some classes of functions,
these two bounds coincide modulo a multiplicative factor. In this case, the new
algorithm is almost optimal. The new algorithm requires precomputation of some
real coefficients that are combinations of multivariate integrals with special weights.
This precomputation is difficult and limits the application of the new algorithm. We
report the results of the precomputation for specific cases.c© 2000 Academic Press

Key Words:Feynman–Kac path integration; Wiener measure; multivariate approx-
imation; worst case complexity.

1. INTRODUCTION

Path integrals are defined as integrals over an infinite dimensional space with respect to
a probability measure. For the spaceC of continuous functions and the Wiener measurew,
path integrals are calledWiener integrals. Wiener integrals play a major role in many areas
including quantum physics and chemistry, differential equations, and financial mathematics.

An example of a Wiener integral is given by the famousFeynman–Kac path integral,
which gives the solution of the heat equation

∂z

∂t
(u, t) = 1

2

∂2z

∂u2
(u, t)+ V(u) z(u, t), (1)

335

0021-9991/00 $35.00
Copyright c© 2000 by Academic Press

All rights of reproduction in any form reserved.

336 PLASKOTA, WASILKOWSKI, AND WOŹNIAKOWSKI

z(u, 0) = v(u), (2)

whereu ∈ R, t > 0,V is a potential function, andv is an initial condition function. Then
the solution is the Feynman–Kac path integral of the form

z(u, t) =
∫

C
v(x(t)+ u) exp

(∫ t

0
V(x(s)+ u) ds

)
w(dx). (3)

Approximate evaluations of Wiener integrals was initiated by Cameron [5]. The reader
may find many papers on this subject in [7]. Additionally, this subject has been studied in
[6, 9, 11]. A typical approach is to replace the continuous functionx by x1ψ1+ · · · + xnψn

for some continuous functionsψi and real numbersxi , i = 1, 2 . . . ,n. Then the Feynman–
Kac path integral is approximated by a multivariate integral over the spaceRn. With a proper
choice of the functionsψi , the error goes to zero asn tends to infinity. For instance, Chorin
[6] and Hald [11] proved that the error is of ordern−2 assuming thatv = 1 andV is four
times continuously differentiable.

In this way, the approximate computation of the Feynman–Kac path integral can be re-
duced to the approximate computation of an integral over the whole spaceRn. The cost of
computing the integrand value of then-dimensional integral is proportional ton. This inte-
gral is usually computed by a Monte Carlo algorithm with, if possible, variance reduction.
The randomized error of the Monte Carlo algorithm is of orderk−1/2, wherek denotes the
number of computed integrand values. The total cost is then proportional tonk.

We add that the order of convergence of the Monte Carlo algorithm cannot be significantly
improved. Indeed, Bakhvalov [4] proved that the minimal randomized error is of order
k−(r/n+1/2), wherer denotes the smoothness of the integrands. Sincen is usually much
larger thanr , the minimal randomized error is roughly of orderk−1/2.

Suppose we want to compute an approximation with errorε. This can be achieved by
using Chorin’s algorithm (forv = 1 and four times continuously differentiable functions
V) with n = O(ε−1/2) andk = O(ε−2). The total cost1 is nk which is of orderε−2.5.

In this paper, we propose a different approach to approximation of Feynman–Kac path
integrals. Instead of reducing (3) to multivariate integrals, we consider algorithms that make
the most efficient use of values ofv andV at a finite number of points, and of some other real
coefficients independent ofv andV . Furthermore, we are interested in theworst casesetting.
That is, unlike in the setting of Monte Carlo algorithms, we do not allow randomization,
and we computev andV at deterministically chosen points. In the worst case setting, the
error and cost of an algorithm are defined by itsworstperformance over all functionsv and
V from a given class.

It is natural to ask what is the worst case complexity of Feynman–Kac path integration.
The worst case complexity is defined as the minimum of the number of the values ofv and
V plus the number of arithmetic operations needed to compute andε-approximation to the

1 The heat equation (1) can also be approximated by using the classical approach of finite differences. It is
known that if the solutionz is twice continuously differentiable with respect to the time variablet and four times
continuously differentiable with respect to the space variableu (which holds ifv andV are four times continuously
differentiable) then the solutionz(u, t) can be approximated with errorε and with the total cost of orderε−2. Note
that the finite difference approach yields a deterministic algorithm and the worst case assurance of its error.
Hence, the finite difference algorithm seems a little better than Chorin’s algorithm. However, Chorin’s algorithm
can be applied to Eq. (4) with an arbitrary smoothH , whereas the finite difference algorithm requiresH(u) =
exp(u).

ALGORITHM AND COMPLEXITY FOR FEYNMAN–KAC INTEGRATION 337

Feynman–Kac path integral (3). (The complexity study of general path integrals may be
found in [20].)

In particular, we ask whether the boundε−2.5 for the randomized case setting for four
times continuously differentiable function2 can be improved. As we shall see, even though
we switch to the worst case setting, there exists an algorithm which computes an
ε-approximation at cost of order roughlyε−0.25 and the worst case complexity is of the
same order. Hence, the exponent ofε−1 is an order of magnitude smaller; i.e., we gain an
exponential reduction in the cost. We stress, however, that our proofs require an additional
assumption that the functionsv andV decay sufficiently fast.

Before we state our results more precisely, we note that by shifting the initial condition
and potential functions, we may, without loss of generality, assume that the space parameter
u = 0 in (3). Furthermore, as in [6, 11], we consider in this paper a slight generalization
of the Feynman–Kac path integrals by changing the exponent function to a functionH .
Unlike in [6, 11], we assume thatH is an entire function.3 That is, we study approximate
computations of

S(v,V) =
∫

C
v(x(t))H

(∫ t

0
V(x(s)) ds

)
w(dx) (4)

for various functionsv andV from a given class, and for a fixed positivet .
Observe thatS is a functional which dependslinearly on the functionv, and, in general,

nonlinearlyon the functionV . The nonlinear dependence onV is especially important.
We assume thatv andV belong to a normed linear spaceF of functions defined over

R. We want to compute anε-approximation toS(v,V) for all v andV from F that are
uniformly bounded in the norm of the spaceF . We stress that we do not need to specify the
spaceF . That is, specific results depend onF , but our analysis is valid for any spaceF .

For a given spaceF , we present a new algorithmAε which computes anε-approximation
of the Feynman–Kac path integralS given by (4). It is based on Smolyak’s algorithm
for multivariate tensor products; see, e.g., [19]. The algorithmAε uses the values ofv
andV at deterministically chosen points derived from a certain weighted approximation
problem for the classF . More precisely, we approximatev (andV) by linear combinations
v(t1,ε)g1,ε + · · · + v(tn,ε)gn,ε, where the sample pointsti,ε and the functiongi,ε are chosen
in a special way.

The algorithmAε depends polynomially on the computed values ofv andV . The degree
of this polynomial depends onε, and slowly goes to infinity asε tends to zero. The need to
use a nonlinear algorithm is not surprising since the original problem is nonlinear inV .

We provide an explicit bound on the cost of the algorithmAε. By the cost we mean the
total number of the computed function values ofv and V plus all arithmetic operations
needed to computeAε(v,V). The essence of this bound is that the cost ofAε is roughly the
same as the cost of approximating the functionsv andV from the classF to within ε. In
this way, we prove that the Feynman–Kac path integration problem is not essentially harder
than the corresponding approximation problem.

We illustrate the behavior of the algorithmAε for various subclasses ofCr (R). For
these subclasses, the cost ofAε is roughly of orderε−1/r . Furthermore, the algorithm
Aε is now almost optimal. This should be compared to the cost of ordernε−2 when the

2 Or the boundε−2 for the worst case setting with the finite difference approach andH restricted to exp.
3 If H is not entire but smooth, one may replaceH by a polynomialP which approximatesH such that
|H(u)− P(u)| ≤ ερ(u), ∀u ∈ R, where the weightρ is, for example, equal toρ(u) = exp(u).

338 PLASKOTA, WASILKOWSKI, AND WOŹNIAKOWSKI

classical Monte Carlo algorithm is used, wheren, as before, denotes the dimension of the
reduced multivariate integral. Hence, despite the use of the worst case setting, we have a
big improvement.

The algorithmAε requires the precomputation of certain real coefficients which are
given as some weighted multivariate integrals. These coefficients are independent of the
functionsv,V ∈ F , but they depend on the global parameters of the Feynman–Kac path
integration problem such asε, H, t , and the classF . The total number of them is roughly
equal to the cost of the algorithmAε, and it goes to infinity asε tends to zero. Observe
that any implementation of the algorithmAε can use these coefficients as built in elements
(constants), hence the precomputing does not count in the cost analysis ofAε.

The precomputing relies on calculation of a large number of multivariate integrals. Hence
it is not surprising that it itself is a difficult task. We did three different precomputations
for classesF of functions of regularitiesr = 1, 2, and 4. We used Monte Carlo to calculate
the integrals. The precomputed coefficients were evaluated with error of order 10−4, see
Section 5. This obviously limits the application of the algorithmAε to a relatively largeε. We
believe that the precomputing of these coefficients requires the design of a special algorithm
that takes a full advantage of the specific form of the weighted multivariate integrals to be
calculated. Unless we have such an efficient algorithm, the practical use ofAε will be most
likely restricted to moderate accuracyε. However, if one is interested in rapid approximation
of many path integrals with a moderate accuracy then the precomputation is not an issue
and the algorithmAε can be used very efficiently.

In this paper we also study the worst case complexity of Feynman–Kac path integration.
The upper bound on the complexity is obviously supplied by the cost of the algorithmAε. As
already mentioned, this upper bound is given in terms of a certain approximation problem.
We establish a lower bound by showing that Feynman–Kac path integration is not easier
than a certain weighted scalar integration problem. The weight is now a one-dimensional
Gaussian,(2π t)−1/2 exp(−u2/(2t)), and the weighted integration problem is considered
again for the classF .

Hence, if the weighted approximation and integration problems for the classF have
essentially the same complexity then we have tight bounds on the complexity of Feynman–
Kac path integration. This is the case, modulo multiplicative factors, for various subclasses
of Cr (R) for anyr . Forr = 0, the weighted integration problem has infinte complexity for
smallε, and so does Feynman–Kac path integration. Forr ≥ 1, all three complexities are
essentially of orderε−1/r . In this case, the algorithmAε is almost optimal.

Finally we stress that, although Feynman–Kac path integration is nonlinear, we bound
its complexity by the complexities of twolinear problems. From below, it is bounded by
weighted integration, and from above by approximation. This is essential since it allows us
to use the complexity theory of linear problems; see, for example, [13–15, 17] for integration
and [14, 17] for approximation. What is perhaps even more striking is that both weighted
integration and approximation areone-dimensionalproblems although Feynman–Kac path
integration involves integrals over an infinite-dimensional space.

2. FORMULATION OF THE PROBLEM

Let w be the classical Wiener measure defined on the spaceC = C([0,+∞]) of con-
tinuous functionsx : [0,+∞)→ R. For the definition and basic properties of the Wiener
measure we refer the reader to, e.g., [18]. Here, we only recall thatw is a zero-mean Gaussian

ALGORITHM AND COMPLEXITY FOR FEYNMAN–KAC INTEGRATION 339

measure with the covariance function

Rw(s, t) =
∫

C
x(s)x(t)w(dx) = min{s, t}.

Let H be an entire real function,H : R→ R, normalized such thatH(0) = 1. We assume
that the successive derivatives ofH at zero can be easily computed. A primary example
of such a function isH(t) = exp(t). For a given functionH , we define the functionH∗:
R→ R+ by

H∗(t) =
∞∑

d=1

∣∣H (d)(0)
∣∣

d!
|t |d.

Clearly,|H(u)| ≤ H ∗(u)andH∗ is an increasing function over [0,+∞). ForH(t) = exp(t)
we haveH∗ = H over [0,+∞).

We need an upper bound on the coefficients ofH∗. For simplicity, we assume that there
exists a nonnegative constantH such that∣∣H (d)(0)

∣∣ ≤ Hd, ∀d = 0, 1, (5)

Then (5) implies that

|H(u)| ≤ H∗(u) ≤ exp(H|u|).

Let F be a normed linear space of functions defined overR. The norm ofF will be denoted
by‖ · ‖F . We assume that for everyu ∈ R the function evaluation functionalLu(f) = f (u)
is continuous; i.e., it has a finite (operator) norm‖Lu‖F .

We need an additional assumption that relates the Wiener measurew, the functionH ,
and the spaceF . Namely, we assume that for any positivet anda we have∫

C

∥∥Lx(t)

∥∥
F

H∗
(

a
∫ t

0

∥∥Lx(s)

∥∥
F

ds

)
w(dx) <∞. (6)

Note that (6) holds if‖Lt‖F = O(tα) with α < 2 ast tends to infinity. Indeed, in this case
the integrand in (6) is bounded byα1‖x‖α[0,t] exp(α2‖x‖α[0,t]) for someα1 andα2 which
only depend ont, α, andH, with ‖x‖[0,t] = maxu∈[0,t] |x(u)|. Sinceα < 2, the integrand
is bounded byα3 exp(α4‖x‖2−δ[0,t]) for some positiveδ, α3, andα4. The latter function is
integrable due to Fernique’s theorem; see, e.g., [2].

We illustrate these assumptions by the following examples of the spaceF .

EXAMPLE 1. Let F be the following Banach space of functionsf : R→ R. Each f
has absolutely continuous(r − 1)st derivative, f (0) = · · · = f (r−1)(0) = 0, and itsr th
derivative is bounded in the following sense:

‖ f ‖F := ∥∥(f · ψ1)
(r) · ψ2

∥∥
L p(R)

<∞.

Here 1≤ p ≤ ∞ andψi , i = 1, 2, are given weight functions of the form

ψi (x) = (|x| + 1)ai (7)

340 PLASKOTA, WASILKOWSKI, AND WOŹNIAKOWSKI

with a1 > 0 anda2 ∈ R. Since f · ψ1 has only one-sided derivatives atx = 0, by the norm
‖ · ‖L p(R) we formally mean(‖ · ‖p

L p(R−) + ‖ · ‖
p
L p(R+))

1/p.
Obviously,‖ · ‖F is a norm. Furthermore, function evaluations,Lx(f) = f (x), are con-

tinuous functionals. Indeed, for a positivex, we have

| f (x)| = (ψ1(x))
−1

∣∣∣∣ ∫ ∞
0

(x − t)r−1
+

(r − 1)!
· (f · ψ1)

(r)(t) · ψ2(t)

ψ2(t)
dt

∣∣∣∣
≤ (ψ1(x))

−1 · ‖ f ‖F · A(x)

with

A(x) =
(∫ x

0

(
(x − t)r−1

(r − 1)!
· (t + 1)−a2

)q

dt

)1/q

and q such that 1/p+ 1/q = 1. It is easy to see thatA(x) = O(xr−1−a2+1/q) =
O(xr−1/p−a2). Since the same can be shown for negativex, we conclude that

‖Lx‖F = O
(|x|r−1/p−a1−a2

)
as |x| → ∞. (8)

Hence (6) is satisfied ifr − 1/p− a1− a2 < 2.

EXAMPLE 2. Let F be the Banach space of functionsf : R→ R with continuous and
bounded derivatives up to orderr , and

‖ f ‖F = max
{‖ f · ψ‖∞,

∥∥ f (i)
∥∥
∞, 1≤ i ≤ r

}
.

Hereψ ∈ C(R) is a suitably chosen function with values at least 1. For instance,ψ ≡ 1, or
ψ(u) = (1+ |u|)a with a ≥ 0, orψ(u) = exp(au2)with a ≥ 0. Then‖Lx‖F ≤ 1/ψ(x) ≤
1 for anyx ∈ R, and (6) holds.

EXAMPLE 3. Let F be a reproducing kernel Hilbert space whose kernel is denoted
by K (·, ·). For the definition and basic properties of reproducing kernel Hilbert spaces
see, e.g., [3]. We only recall that for anyf ∈ F and anyt ∈ R we haveK (t, ·) ∈ F
and f (t) = 〈 f, K (t, ·)〉F , ∀t ∈ R. In particular,K (t, t) ≥ 0 and‖Lt‖F = ‖K (t, ·)‖F =√

K (t, t). Hence, (6) holds ifK (t, t) = O(tβ) with β < 4 ast tends to infinity.
To be more specific, consider nowK (u, t) = 1

2 exp(−|u− t |). This kernel corresponds
to the spaceF consisting of functionsf with

‖ f ‖2F = 〈 f, f 〉F =
∫
R
((f (t))2+ (f ′(t))2) dt <∞.

ThenK (t, t) = 1/2 and (6) holds.

We are ready to define our problem. Forv,V ∈ F and a fixed positivet we want to
approximate

S(v,V) = S(v,V; t) =
∫

C
v(x(t))H

(∫ t

0
V(x(s)) ds

)
w(dx). (9)

ALGORITHM AND COMPLEXITY FOR FEYNMAN–KAC INTEGRATION 341

Observe that the operatorS : F2× R+ → R is well defined. Indeed, due to|v(u)| ≤
‖v‖F‖Lu‖F , we have∣∣∣∣v(x(t))H(∫ t

0
V(x(s)) ds

)∣∣∣∣ ≤ |v(x(t))| H∗(∣∣∣∣ ∫ t

0
V(x(s)) ds

∣∣∣∣)
≤ ‖v‖F

∥∥Lx(t)

∥∥
F

H∗
(
‖V‖F

∫ t

0

∥∥Lx(s)

∥∥
F

ds

)
.

Hence, the integral in (9) exists and is finite due to (6).
The operatorS is given by apathintegral, i.e., by an integral over the space of continuous

functions. In general,S is nonlinear.
As already mentioned in the introduction, forH(u) = exp(u), (9) is the famous Feynman–

Kac formula for the solution of the heat equation with the initial conditionv and the potential
function V , see, e.g., [1, 8, 12]. This is why we call (9) aFeynman–Kac path integral
independent of the choice of the functionH .

We wish to approximateSwith (worst case) error at mostε for variousv andV . In what
follows, we assume that we know some upper bounds on their norms. For positiveν andV,
let ν andV denote upper bounds on the norms ofv andV , and let

Fν,V = {(v,V) ∈ F2 : ‖v‖F ≤ ν and ‖V‖F ≤ V}.
We wish to find an algorithmAε such that

sup
(v,V)∈Fν,V

|S(v,V)− Aε(v,V)| ≤ ε.

We require that the algorithmAε can use onlyvaluesof the functionsv andV , as well as
arithmetic operations and comparisons of real numbers. The cost of the algorithmAε,
cost(Aε), is the number of such function values and arithmetic operations. The (worst case)
complexity comp(ε) of Feynman–Kac path integration is defined as the minimal cost of
algorithms with errorε; see, e.g., [17] for a precise definition. Obviously, the complexity
comp(ε) depends on all the parameters of the problem, i.e., on the functionH and its bound
H given by (5), on the parametert , and on the classF , as well as the norm boundsν and
V. To stress the dependence on the classF , we will write comp(ε) = comp(ε; F).

3. NEW ALGORITHM

In this section, we derive a new algorithm for approximating Feynman–Kac path integrals.
We analyze its error and estimate the cost needed to compute anε-approximation. The
optimality properties of this new algorithm will be established in the next section.

We begin with expanding the functionH in (9). We have

S(v,V) =
∫

C
v(x(t))H

(∫ t

0
V(x(s)) ds

)
w(dx) =

∞∑
d=0

Sd+1(v,V),

where

Sd+1(v,V) = H (d)(0)

d!

∫
C
v(x(t))

(∫ t

0
V(x(s)) ds

)d

w(dx)

= H (d)(0)

d!

∫
C
v(x(t))

(∫
[0,t]d

V(x(t1)) · · ·V(x(td)) dt
)
w(dx)

342 PLASKOTA, WASILKOWSKI, AND WOŹNIAKOWSKI

with t = [t1, t2, . . . , td]. The inner integrand is a symmetric function ofti ’s and, hence,

Sd+1(v,V) = H (d)(0)
∫

C
v(x(t))

∫
0≤t1≤···≤td≤t

V(x(t1)) · · ·V(x(td)) dt w(dx).

Sett0 = z0 = 0, td+1 = t , andzj = x(t j) for j = 1, . . . ,d + 1. Using a well-known fact
on the distribution of the random vectorz= [z1, z2, . . . , zd+1] ∈ Rd+1, we get

Sd+1(v,V) = H (d)(0)
∫
Rd+1

fd+1(z)gd+1(z) dz, (10)

where

fd+1(z) = v(zd+1)

d∏
k=1

V(zk), (11)

g1(z1) =
exp
(−z2

1

/
(2t)

)
(2π t)1/2

,

(12)

gd+1(z) =
∫

0≤t1≤t2≤···≤td≤td+1

exp
(− 1

2

∑d+1
j=1(zj − zj−1)

2/(t j − t j−1)
)

(2π)(d+1)/2
√
(t1− t0) · · · (td+1− td)

dt.

Hence,Sd+1(v,V) is a (d + 1)-dimensional weighted integral with the weightgd+1. The
weightgd+1 is nonnegative, and∫

R
g1(z) dz= 1 and

∫
Rd+1

gd+1(z) dz=
∫

0≤t1≤t2≤···≤td≤td+1

dt = td

d!
.

We will need the following lemma.

LEMMA 1. We have

‖g1‖2L2(R) =
1

2
√
π t

and ‖gd+1‖2L2(Rd+1)
≤ t (3d−1)/2

20(1+ (3d − 1)/2)
, ∀d ≥ 1.

Proof. See the Appendix.

To define the new algorithm for approximating the Feynman–Kac path integrals, we need
efficient algorithms for approximating multivariate functionsfd given in (10) and (11) with
error measured in thed-dimensionalL2-norm:

‖ fd‖L2(Rd) =
√∫

Rd
f 2
d (t) dt.

It follows from [19] that such efficient algorithms exist for a number of classesF .
Indeed, sincefd is a tensor product of scalar functions and‖ · ‖L2(Rd) is a tensor product

norm, Lemma 2 of [19] holds. We need only to replace the worst case error in (19) of
[19] by the error for the functionfd. Due to linearity of the corresponding algorithms, this
will result in increasing the error boundε by multiplying it by the norm offd; i.e., instead
of ε, the error will be bounded byε‖v‖F‖V‖d−1

F . Furthermore, all remaining worst case
results of [19] hold if the worst case errors are replaced by the errors for the functions of

ALGORITHM AND COMPLEXITY FOR FEYNMAN–KAC INTEGRATION 343

the form fd. In particular, forε > 0 andd ≥ 1, there are numbersn(ε,d) ∈ N+, functions
gi,ε,d ∈ L2(Rd) and pointst i,ε,d ∈ Rd, i = 1, . . . ,n(ε,d), such that the algorithms

Aε,d(fd) =
n(ε,d)∑
i=1

fd(t i,ε,d)gi,ε,d (13)

approximatefd with errors bounded by

‖ fd − Aε,d(f)‖L2(Rd) ≤ ε‖v‖F‖V‖d−1
F ≤ ενVd−1. (14)

The numbern(ε,d) of function evaluations used byAε,d is bounded by

n(ε,d) ≤ α0

(
α1+ α2

ln 1/ε

d − 1

)(α+1)(d−1)

+
ε−α (15)

for some numbersαi and a positiveα; see [19]. We havea+ = max{a, 0}, and by convention,
the right-hand side of (15) equalsα0ε

−α whend = 1. We stress that the numbersαi andα
do not depend onε andd, and they are fully determined by the approximation problem for
the classF .

The essence of (15) is that the leading termε−α is the same for alld. The only dependence
ond is through the logarithmic factors.

We are ready to approximate the weighted integralSd(v,V). For givenε > 0 andd ≥ 1,
consider the algorithm

Sd(v,V) ∼ φε,d(v,V) with φε,d(v,V) = H (d−1)(0)
∫
Rd

Aε,d(fd)(z) gd(z) dz, (16)

whereAε,d is the algorithm (13) for approximatingfd. Due to linearity ofAε,d, we have

φε,d(v,V) = H (d−1)(0)
n(ε,d)∑
i=1

fd(t i,ε,d)ai,ε,d with ai,ε,d =
∫
Rd

gi,ε,d(z) gd(z) dz. (17)

From (14) and Lemma 1, we get

|Sd(v,V)− φε,d(v,V)| ≤ |H (d−1)(0)| ‖ fd − Aε,d(fε,d)‖L2(Rd)‖gd‖L2(Rd) ≤ εKdνVd−1,

(18)

where

K1 = |H(0)|√
2
√
π t

and

Kd = t (3d−4)/4|H (d−1)(0)|√
2
√
π0(1+ (3d − 4)/2)

for d = 2, 3,

Since0(z) = zz−1/2e−z
√

2π(1+ o(1)) asz→+∞, there exists a positiveK = K (t,H)
such that

Kd = O
(
K d
/

d3d/2
)
.

Hence,Kd goes super-exponentially fast to zero asd goes to infinity.

344 PLASKOTA, WASILKOWSKI, AND WOŹNIAKOWSKI

We now define the new algorithmAε for approximating the Feynman–Kac path integral
S(v,V). For a givenε,

Aε(v,V) =
∞∑

d=1

φεd,d(v,V), (19)

where

εd = ε

Kd2dνVd−1
. (20)

SinceKd goes super-exponentially fast to zero,εd goes super-exponentially to infinity with
d. Hence,n(εd, d) and consequentlyφεd,d are zero for larged. Therefore,Aε consists of
only finitely many terms in (19).

THEOREM1. The algorithm Aε defined by(19)and(20)approximates the Feynman–Kac
path integral S(v,V) with error not exceedingε and cost bounded by

cost(Aε) ≤ K (ε)ε−α, (21)

where K(ε) = 2α0(2ν)α/(
√

2
√
π t)αC(ε),

C(ε) = 2+
∞∑

d=2

(d+1)Cα(d−1)
1

×
(

C2+α2

1
2 ln(2

√
π t)+ ln ε+ ln0(1+ (3d−4)/2)

d − 1

)(α+ 1)(d+1)

+

/
0(1+ (3d − 4)/2)α, (22)

and C1 = 2HVt3/4, C2 = α1+ α2 ln C1. Furthermore,

K (ε) = O(ε−δ), ∀δ > 0.

Proof. We first prove that the error of the algorithmAε is at mostε. We have

S(v,V)− Aε(v,V) =
∞∑

d=1

(Sd(v,V)− φεd,d(v,V)).

Due to (18) and (20) we conclude

‖S(v,V)− Aε(v,V)‖ ≤
∞∑

d=1

εd KdνVd−1 = ε,

as claimed.
We now estimate the cost of the algorithmAε. We need to computeφεd,d(v,V) given by

(17) and (11) ford = 1, 2, Assuming that the numbersH (d−1)(0)ai,ε,d are precomputed,
we need to computen(εd, d) values of fd and at most 2n(εd, d)− 1 arithmetic operations.

ALGORITHM AND COMPLEXITY FOR FEYNMAN–KAC INTEGRATION 345

Each value offd requires one function value ofv andd − 1 values ofV to be computed
as well asd − 1 multiplications. Hence, the cost of computingφεd,d(u,V) is bounded by
2(d + 1)n(εd, d). The cost of computingAε(v,V) is estimated by

cost(Aε) ≤
∞∑

d=1

2(d + 1)n(εd, d).

Due to (15), after some calculations we obtain

cost(Aε) ≤ K (ε)ε−α,

which proves (21).
Finally, we prove thatK (ε) = O(ε−δ) for arbitrarily small positiveδ. Of course, it is

enough to prove thatC(ε) = O(ε−δ). Let β = 1.5(α + 1). Using once more the fact that
0(z) = zz−1/2e−z

√
2π(1+ o(1)) asz→+∞, there exists a positiveC such that

C(ε) ≤
∞∑

d=2

Cβd
(
1+ ln(1/ε)

/
d
)βd

d1.5αd
.

Clearly,

1+ ln 1/ε

d
≤ β
δ

(
1+ δ ln 1/ε

βd

)
, ∀δ ≤ β.

Hence, (
1+ ln 1/ε

d

)βd

≤
(
β

δ

)βd(
1+ ln(1/ε)δ

βd

)βd

≤
(
β

δ

)βd(1

ε

)δ
.

From this we conclude that

C(ε) ≤
(

1

ε

)δ ∞∑
d=2

(
Cβ

δ

)βd

d−1.5αd.

Since the last series is convergent,C(ε) = O(ε−δ), as claimed.

4. COMPLEXITY

In this section, we analyze the worst case complexity of Feynman–Kac path integration.
We obtain bounds on the complexity by relating Feynman–Kac path integration to some
specificapproximationandintegrationproblems overR.

We begin with an upper bound. We assume that the functionsf ∈ F can be approximated
in the spaceL2(R)with orderp > 0 by using values off . That is, there is a sequence{An}n
of algorithms, each of the form

An(f) =
n∑

i=1

f (ti,n)gi,n with ti,n ∈ R, and gi,n ∈ Ls(R), (23)

such that

‖ f − An(f)‖L2(R)

‖ f ‖F
= O(n−p), ∀ f ∈ F. (24)

346 PLASKOTA, WASILKOWSKI, AND WOŹNIAKOWSKI

Let p∗ = p∗(F) denote the supremum ofp satisfying (24). The exponentp∗ is closely
related to the complexity compapp(ε, F) of the approximation problem. That is, if we want
to approximate functions from the unit ball of the classF in theL2-norm overR then

Ä
(
ε−1/p∗+δ) = compapp(ε; F) = O

(
ε−1/p∗−δ), ∀δ > 0. (25)

The sequence{An}n of algorithms may serve as a basic step in constructing the algorithms
Aε,d of (13) as explained in [19]. In fact, the parameterα of (15) can be set toα = 1/p
for any p satisfying (24). Theorem 1 states that the cost of the algorithmAε is bounded by
K (ε)ε−α with K (ε) = O(ε−δ). Obviously, the cost of the algorithmAε is an upper bound
on the complexity of Feynman–Kac path integration. Sincep can be arbitrarily close top∗,
we get the following upper bound.

comp(ε; F) = O
(
ε−1/p∗−δ), ∀δ > 0.

We now turn to a lower bound on the complexity of Feynman–Kac path integration.
Consider the Gaussian-weighted integration problem for the classF . That is, suppose we
want to approximate the integrals

I (f) = (2π t)−1/2
∫
R

f (u) exp(−u2/(2t)) du

by using function values only. Assume that there is a sequence{Bn}n of algorithms each of
the form

Bn(f) =
n∑

i=1

f (τi,n)ai,n with τi,n ∈ R, and ai,n ∈ R,

such that

|I (f)− Bn(f)|
‖ f ‖F

= O(n−q), ∀ f ∈ F. (26)

Let q∗ = q∗(F) denote the supremum ofq satisfying (26). It is known that the complexity
compint(ε, F) of integration in the unit ball of the classF satisfies

Ä
(
ε−1/q∗+δ) = compint(ε, F) = O

(
ε−1/q∗−δ), ∀δ > 0. (27)

It is clear that the complexity of Feynman–Kac path integration is bounded from below by

comp(ε; F) = Ä(ε−1/q∗+δ), ∀δ > 0.

Indeed, takeV = 0. SinceH(0) = 1 we haveS(v, 0) = ∫C v(x(t))w(dx). Changing vari-
ables byu = x(t) we getS(v, 0) = I (u). Hence, Feynman–Kac path integration problem
is not easier than the integration problem for the ball of radiusν in the spaceF . Sinceν
changes only the multiplicative factor of the integration complexity, the lower bound on
comp(ε; F) is proven. Hence, we have

THEOREM 2. Let p∗ and q∗ be the exponents of the approximation and integration
problems defined by(25) and (27). Then the worst case complexity of Feynman–Kac path
integration is bounded by

Ä
(
ε−1/q∗(F)+δ) = comp(ε; F) = O

(
ε−1/p∗(F)−δ), ∀δ > 0. (28)

ALGORITHM AND COMPLEXITY FOR FEYNMAN–KAC INTEGRATION 347

Observe that the exponents of the lower and upper bounds in (28) do not depend on the
function H . For some functionsH , the exponent of the lower bound is sharp. This holds,
for example, forH(t) = 1, ∀t , independently of the choice of the spaceF .

For some spacesF , we havep∗ = q∗, and the exponents of the lower and upper bounds
almost coincide. In this case, the algorithmAε given by (19) is almost optimal. We now
present examples of such spacesF .

EXAMPLE 4. LetF be the Banach space of Example 1 with the functionsψ1, ψ2 defined
by (7). Letg(x) = f (x)ψ1(x). Then‖ f ‖F = ‖g(r)ψ2‖L p(R). Suppose we approximatef
by U which uses the valuesf (xi) for i = 1, 2, . . . ,n. We have∫

R
| f (x)−U (x)|2 dx =

∫
R
|g(x)−U1(x)|2ψ−2

1 (x) dx,

whereU1(x) = U (x)ψ1(x). This shows thatL2-approximation for the functionsf is equiv-
alent to weightedL2-approximation with weightψ−2

1 (x) for the functionsg. The latter was
considered in [21]. Assume that

a1+min{1− 1/p,a2} > r + 1/2− 1/p.

It is proved in [21] that then the exponent forL2-approximation equalsp∗ = r − (1/p−
1/2)+. For integration, the exponent equalsq∗ = r . Hence, forp ≥ 2 we havep∗ = q∗ = r
and, due to Theorem 2, the complexity of Feynman–Kac integration is roughlyε−1/r .
Observe also that the last inequality implies (6) due to (8).

EXAMPLE 5. Consider now the Banach spaceF of Example 2. Since we consider only
r times continuously differentiable functions, it is well known that the exponentp∗ of L2-
approximation is at mostr . To obtain a lower bound forp∗ we proceed as follows. Take
T > 0 and sample pointsx1 = iT/n, for i = 0,±1,±2, . . . ,±n. We approximatef by f̃
which is the piecewise polynomial interpolation of orderr − 1 on the interval [−T, T], and
zero outside of this interval. Then we have

| f̃ (u)− f (u)| ≤
{

C(T/n)r ‖ f ‖F , |u| ≤ T

ψ−1(u)‖ f ‖F , |u| > T
,

which implies

‖ f̃ − f ‖L2(R)

‖ f ‖F
= O

(
Tr+1/2n−r +

(∫
|u|>T

ψ−2(u) du

)1/2)
.

Suppose now thatψ(u) = (1+ |u|)a with a > 1/2. Then, forT = O(nr/(r+a)), we have
that the error

‖ f̃ − f ‖L2(R)

‖ f ‖F
= O

(
n−r (a−1/2)/(r+a)

)
and, consequently, the exponentp∗ ≥ (r

r+a

)
(a− 1/2). Hence, for largea, the exponent

p∗ ' r . From this it immediately follows that ifψ(u) increases faster than any polynomial
as the argument|u| → ∞, then p∗ = r . This holds, for instance, for the Gaussian weight
ψ(u) = exp(−u2/2)/

√
2π .

Similarly, for integration, we obviously have the exponentq∗ ≤ r sincer is the exact
exponent for integration over a finite interval. As before, forψ increasing faster than
polynomials we haveq∗ = r .

348 PLASKOTA, WASILKOWSKI, AND WOŹNIAKOWSKI

Thus, for spacesF with ψ increasing faster than any polynomial, the complexity of
Feynman–Kac integration is again roughlyε−1/r .

5. IMPLEMENTATION REMARKS

In this section, we discuss implementation of the Feynman–Kac path integration algo-
rithm Aε of Section 3.

The algorithmAε produces anε-approximation to the solutionS(v,V). SinceS is non-
linear, it is not surprising thatAε is also nonlinear. In fact, the algorithmAε is a polynomial
in the values ofv andV at sample points. When we estimate the cost ofAε, we assume
that the coefficients of this polynomial areprecomputed. For fixedε, H, t, ν,V, and the
classF , this can be done, at least theoretically, since the coefficients ofAε are indepen-
dent of the functionsv andV which vary through the balls of the classF . Formally, this
means that the algorithmAε is nonuniform inε, H, t, ν, andV. The reader is referred to
a recent paper [16] where the cost of uniform and nonuniform algorithms is discussed and
compared.

The precomputed coefficients of the algorithmAε are given as weighted integrals of the
form

ai,ε,d =
∫
Rd

gi,ε,d(z)gd(z) dz (29)

for some specific (tensor product) functionsgi,ε,d, see (13), and weightsgd(z) given by
(12). We needai,ε,d for all i = 1, 2, . . . ,n(ε,d) and a fewd. The total number of needed
ai,ε,d is

∑∞
d=1 n(ε,d). As already mentioned in Section 3,n(ε,d) goes super-exponentially

fast to zero and only a few terms of the last series are not zero.
Clearly, we do not need the exact values ofai,ε,d. It is enough to know them approximately.

However, the required accuracy of the coefficients depends onε and increases asε decreases.
The precomputation of the coefficientsai,ε,d with large precision may be difficult. Indeed,

let us first observe that eachai,ε,d is a linear combination of some multivariate weighted
integrals defined overRd. The integrals are of the form

Ii, j =
∫
Rd+1

ψi0, j0(z0)ψi1, j1(z1) · · ·ψid, jd(zd)

×
∫

0≤t0<···<td=t
=

exp
(
− 1

2

(
z2

0
t0
+ (z1−z0)

2

t1−t0
+ · · · + (zd−zd−1)

2

td−td−1

))
(2π)(d+1)/2

√
t0(t1− t0) · · · (td − td−1)

dt dz, (30)

for different indicesi andj , whereψi k, jk are some basis functions used in the one-dimensional
approximation (23). Even for moderated, the computation of (30) with large precision is a
difficult task.

Precomputing should be done with higher precision than the desired precision of the final
approximation toS(v,V). For instance, if we want the final approximation with precision
10−3, we must have the coefficientsai,ε,d with precision 10−4 or even higher, and hence the
number of integrals to be precomputed can be huge. Thus, in addition to the errors occurring
when approximating the path integral, we have another source of possible errors which is
due to inexact precomputation.

ALGORITHM AND COMPLEXITY FOR FEYNMAN–KAC INTEGRATION 349

We experienced all these difficulties when implementing the algorithmAε. As the one-
dimensional approximations we took piecewise polynomials of order 0, 1, and 3, which are
(almost) optimal forL2-approximation for many spacesF including those of Example 2
with regularityr = 1, 2, 4, correspondingly (see also Example 5).

In our implementation, the one-dimensional sample points were chosen as the points
dividing the real line into the intervals of equal Gaussian (standard) measure. We calculated
the integralsI i,j by using the classical Monte Carlo with respect tot andz.

We present sample results for one precomputing for eachr . We sett = 1, the upper
bound ond was taken asdmax= 6 and the numbern(d) of points in approximation offd

was equal to 511, 769, 1023, 769, 351, 545, 127 ford = 0, 1, 2, 3, 4, 5, 6, respectively. This
corresponds to precomputation of 10,375 integrals (30) of dimensions 1, 3, 5, 7, 9, 11, 13.
For each integral (30), we used Monte Carlo with 107 sample points. The calculations were
performed on the IBM POWER PC 604 computer, and it took about two weeks of CPU
time (for eachr) to complete the precomputing.

The precomputing described above was then used in an implementation ofAε and applied
for various functionsv andV . We present two series of tests, forv andV with known and
unknown exact solutionsS(v,V; t). In the latter case, we ran a version of Chorin’s algorithm
for many sample points—see Chorin [6] or Hald [11]—and treated the results of Chorin’s
algorithm as an exact solution.

We stress that if the precomputing were exact, Chorin’s algorithm would be inferior to our
algorithm, at least for functions from classes of Example 2, as explained in the Introduction.
In particular, with the precomputing above,Aε uses only 511 values ofv andV , and for
v = 1 this number even reduces to 127 values ofV . Hence, the running time ofAε is almost
negligible. Chorin’s algorithm in turn usesnkvalues, wheren is the number of discretization
points andk is the number of Monte Carlo points. On the other hand, Chorin’s algorithm
doesnot require any precomputing and hence it can give more accurate results providedn
andk are chosen large enough. The maximal accuracy obtained by Chorin’s algorithm was
about 10−4 (which agrees with theoretical properties of Monte Carlo), and to get this we
needed 1 or 2 h of CPUtime. With the use of precomputed coefficients, the same accuracy
can be obtained byAε in less than 1 s.

In all the tests we assumeH(z) = exp(z) andt = 1.

Test 1(Known Solutions). Here v and V satisfy V(x) = 1− v′′(x)/2v(x)) for the
functionv given below. Then the exact solution isS(v,V; t) = v(0)et .

The results for the first casev = V = 1 actually show the accuracy of the precomputing,
since if the precomputing were exact we would get the exact solution for allr ’s. It seems
that for r = 4 the accuracy of the precomputing is not sufficient and therefore the errors
for r = 4 are comparable with those forr = 2. (This is probably caused by the fact that for
r = 4 the basis functions in (30) are more complicated than forr = 1, 2.)

|Aε − S(v,V; 1)|
v(x) V(x) r = 1 r = 2 r = 4

1 1 5.310− 3 3.410− 4 8.210− 4
cos(x) 3/2 1.310− 1 3.410− 2 3.510− 2
exp(x) 1/2 8.310− 2 4.510− 2 4.510− 2
exp(−x2/2) (3− x2)/2 6.610− 2 1.110− 1 1.110− 1

350 PLASKOTA, WASILKOWSKI, AND WOŹNIAKOWSKI

Test 2(Unknown Solutions). We setv(x) = V(x) = exp(px2), wherep is a parameter.
The largerp, the larger the norm ofv andV , so that the difficulty of the problem increases
with p.

As for the previous tests, we do not see any signifficant difference between the errors for
r = 2 andr = 4. Once more, this is an indication that the accuracy of precomputing is not
sufficient forr = 4.

We want to stress that the results reported below need not be very conclusive due to the
fact that Chorin’s algorithm is nondeterministic and we only know that its expected error is
not smaller than 10−4. Observe that for tests with unknown solutions we usev andV from
the class of Example 2, in which case the theoretical complexity is roughly proportional
to ε−1/r . However, the bounds on the norms increase withp, and therefore the errors are
larger for largerp:

v(x) = V(x) = exp(−px)

|Aε − Chorin|
p Chorin r = 1 r = 2 r = 4

0 2.71828 5.310− 3 3.410− 4 8.210− 4
1 1.30761 9.610− 3 8.610− 3 8.010− 3
2 0.93898 1.410− 2 1.410− 2 1.510− 2
3 0.75257 2.710− 2 2.710− 3 3.410− 3
4 0.63693 3.910− 2 1.910− 2 2.110− 2

We also applied other than Monte Carlo algorithms for computation of integrals (30),
including some deterministic algorithms, but we have not obtained qualitative better results.
For instance, we used a version of Smolyak’s algorithm. This algorithm requires a tensor
product form of the weight. It can be achieved by a change of variables, but then the
transformed integrand becomes a non-Lipschitz function. Our computations confirmed the
difficulty of dealing with non-Lipschitz functions. Another attempt was made by the use of
some quasi-Monte Carlo algorithms (QMC) which also did not fully succeed.

It seems to us that the accuracy of precomputing can be reduced only by inventing a special
algorithm that makes use of a particular form of the integrals (30). By now, however, the level
10−4 has been the maximal accuracy of the precomputing. This establishes an inevitable
error whenAε is applied and restricts, so far, the practical use ofAε to the cases when
one needs fast a solution with amoderate accuracyand/or for many different functionsv
andV .

Observe also that the precomputing for a specifict can be used to obtain an approximation
of the path integral for othert ’s, so that one can easily draw a graph of the solutionS(v,V; t)
as a function oft . Indeed, this follows from the equality

S(v,V; t1) = S(ṽ, Ṽ; t),

where ṽ(x) = v(x√t1/t) and Ṽ(x) = (t1/t)V(x
√

t1/t). Note that if t1 increases then
the norms of ˜v and Ṽ also increase. Hence, the boundsν andV must be appropriately
modified.

ALGORITHM AND COMPLEXITY FOR FEYNMAN–KAC INTEGRATION 351

APPENDIX

Proof of Lemma 1. The value of‖g1‖2L2(R) is easy to find. Therefore, we only prove the
upper bound onLHS = ‖gd+1‖2L2(Rd+1)

. Obviously,

LHS =
∫

0≤t1≤···≤td≤t

∫
0≤v1≤···≤vd≤t

∫
Rd+1

hd+1(u, t, v) du dv dt,

where

hd+1(u, t, v) =
exp
(
− 1

2

∑d+1
j=1(u j − u j−1)

2(1/(t j − t j−1)+ 1/(v j − v j−1)
)

∏d+1
j=1

√
4π2(t j − t j−1)(v j − v j−1)

with u0 = v0 = 0, vd+1 = t , andv = [v1, . . . , vd]. Let Bd+1 = Bd+1(t, v) be the inner in-
tegral with respect tou. Then

Bd+1 =
∫
Rd

hd(u, t, v)I (ud) du

with

I (ud) =
∫
R

exp(−(ud+1− ud)
2(1/a+ 1/b)/2)√

4π2ab
dud+1,

a = td+1− td, andb = vd+1− vd. By a change of variables,y := (ud+1− ud)
√

1/a+ 1/b,
we get

I (ud) = 1√
4π2(a+ b)

∫
R

exp(−y2/2) dy= 1√
2π(a+ b)

.

This proves that

Bd+1 = Bd√
2π(td+1− td + vd+1− vd)

=
d+1∏
j=1

1√
2π(t j − t j−1+ v j − v j−1)

and, consequently, that

LHS

= 1

(2π)(d+1)/2

∫
0≤t1≤···≤td≤t

∫
0≤v1≤···≤vd≤t

d+1∏
j=1

1√
t j − t j−1+ v j − v j−1

dv dt

= t2d−(d+1)/2

(2π)(d+1)/2

∫
ti≥0,

∑d
i=1ti≤1

∫
vi≥0,

∑d
i=1vi≤1

((
2−

d∑
k=1

(tk + vk)

)
d∏

i=1

(ti + vi)

)−1/2

dv dt;

with the second equality due to the change of variables:ti := (ti − ti−1)/t andvi := (vi −
vi−1)/t . Let us make another change of variables:zi := ti + vi and xi := ti . Then the

352 PLASKOTA, WASILKOWSKI, AND WOŹNIAKOWSKI

domain of integration is contained in a set of nonnegativezi ’s andxi ’s such thatxi ≤ zi and∑d
i=1 zi ≤ 2. This gives the estimate

LHS ≤ t (3d−1)/2

(2π)(d+1)/2

∫
0≤zi ,

∑d
i=1zi≤2

(
2−

d∑
k=1

zk

)−1/2 d∏
i=1

z−1/2
i

∫
0≤x≤z

1dx dz

= t (3d−1)/2

(2π)(d+1)/2

∫
0≤zi ,

∑d
i=1zi≤2

(
2−

d∑
k=1

zk

)−1/2 d∏
i=1

√
zi dz

= (2t)(3d−1)/2

(2π)(d+1)/2

∫
0≤zi ,

∑d
i=1zi≤1

(
1−

d∑
k=1

zk

)−1/2 d∏
i=1

√
zi dz

= t (3d−1)/22d−1(0(3/2))d
√
π

π(d+1)/20(1+ (3d − 1)/2)

= t (3d−1)/2

20(1+ (3d − 1)/2)
,

with the second to last equality due to (4.635.4) in [10]. This completes the proof of the
lemma.

ACKNOWLEDGMENTS

We are grateful to Joseph F. Traub for valuable comments. We also thank Anargyros Papageorgiou for providing
us the FINDER package for multivariate integration. Finally, we thank an anonymous referee who found an error
in the proof of the original version of Lemma 1. The first author was partially supported by the State Committee
for Scientific Research of Poland under Grant 2 P03A 00913, and the second and third authors were supported by
the National Science Foundation under Grants CCR-9729971 and CCR-9731858, respectively.

REFERENCES

1. S. A. Albeverio and R. J. Høegh–Krohn,Mathematical Theory of Feynman Path Integrals, Lecture Notes in
Math. (Springer–Verlag, Berlin, 1976). Vol. 523.

2. A. Araujo and E. Gin´e, The Central Limit Theorem for Real and Banach Valued Random Variables(Wiley,
New York, 1980).

3. N. Aronszajn, Theory of reproducing kernels,Trans. Amer. Math. Soc.68, 337 (1950).

4. N. S. Bakhavlov, On approximate calculation of integrals,Vestn. Mosk. Univ. Ser. Mat. Mekh. Astron. Fiz.
Khim.14, 3 (1959). [In Russian]

5. R. H. Cameron, A Simpson’s rule for the numerical evaluation of Wiener’s integrals in function space,Duke
Math. J.18, 111 (1951).

6. A. J. Chorin, Accurate evaluation of Wiener integrals,Math. Comput.27, 1 (1973).

7. A. D. Egorov, P. I. Sobolevsky, and L. A. Yanovich,Functional Integrals: Approximate Evaluation and
Applications(Kluwer Academic, Dordrecht, 1993).

8. R. P. Feynman and A. R. Hibbs,Quantum Mechanics and Path–Integrals(McGraw–Hill, New York, 1965).

9. L. D. Fosdick, Approximation of a class of Wiener integrals,Math. Comput.19, 225 (1965).

10. I. S. Gradshteyn and I. Ryzhik,Table of Integrals, Series and Products(Academic Press, New York, 1980).

11. O. H. Hald, Approximation of Wiener integrals,J. Comput. Phys.69, 460 (1987).

12. M. Kac, On distributions of certain Wiener functionals,Trans. Amer. Math. Soc.65, 1 (1949).

13. H. Niederreiter,Random Number Generation and Quasi-Monte Carlo Methods, CBMS-NSF Reg. Conf.
Series Appl. Math. (SIAM, Philadelphia, 1992), Vol. 63.

ALGORITHM AND COMPLEXITY FOR FEYNMAN–KAC INTEGRATION 353

14. E. Novak,Deterministic and Stochastic Error Bounds in Numerical Analysis, Lecture Notes in Mathematics
(Springer–Verlag, Berlin, 1988), Vol. 1349.

15. E. Novak, On adaption,J. Complexity12, 199 (1996).

16. E. Novak and H. Wo´zniakowski, On the cost of uniform and nonuniform algorithms,Theor. Comput. Sci.219,
301 (1999).

17. J. F. Traub, G. W. Wasilkowski, and H. Wo´zniakowski,Information-Based Complexity(Academic Press, New
York, 1988).

18. N. N. Vakhania, V. I. Tarieladze, and S. A. Chobanyan,Probability Distributions on Banach Spaces(Reidel,
Dordrecht, 1987).

19. G. W. Wasilkowski and H. Wo´zniakowski, Explicit cost bounds of algorithms for multivariate tensor product
problems,J. Complexity11, 1 (1995).

20. G. W. Wasilkowski and H. Wo´zniakowski, On tractability of path integration,J. Math. Phys.37(4), 2071
(1996).

21. G. W. Wasilkowski and H. Wo´zniakowski, Complexity of weighted approximation overR1, J. Approx.
Theory103, 233 (2000).

	1. INTRODUCTION
	2. FORMULATION OF THE PROBLEM
	3. NEW ALGORITHM
	4. COMPLEXITY
	5. IMPLEMENTATION REMARKS
	APPENDIX
	ACKNOWLEDGMENTS
	REFERENCES

